Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations.

Identifieur interne : 000898 ( Main/Exploration ); précédent : 000897; suivant : 000899

The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations.

Auteurs : Remco Stam [Allemagne] ; Daniela Scheikl [Allemagne] ; Aurélien Tellier [Allemagne]

Source :

RBID : pubmed:28133579

Abstract

Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.

DOI: 10.7717/peerj.2910
PubMed: 28133579
PubMed Central: PMC5248578


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The wild tomato species
<i>Solanum chilense</i>
shows variation in pathogen resistance between geographically distinct populations.</title>
<author>
<name sortKey="Stam, Remco" sort="Stam, Remco" uniqKey="Stam R" first="Remco" last="Stam">Remco Stam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Section of Population Genetics, Technical University of Munich , Freising , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Section of Population Genetics, Technical University of Munich , Freising </wicri:regionArea>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scheikl, Daniela" sort="Scheikl, Daniela" uniqKey="Scheikl D" first="Daniela" last="Scheikl">Daniela Scheikl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Section of Population Genetics, Technical University of Munich , Freising , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Section of Population Genetics, Technical University of Munich , Freising </wicri:regionArea>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tellier, Aurelien" sort="Tellier, Aurelien" uniqKey="Tellier A" first="Aurélien" last="Tellier">Aurélien Tellier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Section of Population Genetics, Technical University of Munich , Freising , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Section of Population Genetics, Technical University of Munich , Freising </wicri:regionArea>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28133579</idno>
<idno type="pmid">28133579</idno>
<idno type="doi">10.7717/peerj.2910</idno>
<idno type="pmc">PMC5248578</idno>
<idno type="wicri:Area/Main/Corpus">000A54</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A54</idno>
<idno type="wicri:Area/Main/Curation">000A54</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A54</idno>
<idno type="wicri:Area/Main/Exploration">000A54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The wild tomato species
<i>Solanum chilense</i>
shows variation in pathogen resistance between geographically distinct populations.</title>
<author>
<name sortKey="Stam, Remco" sort="Stam, Remco" uniqKey="Stam R" first="Remco" last="Stam">Remco Stam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Section of Population Genetics, Technical University of Munich , Freising , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Section of Population Genetics, Technical University of Munich , Freising </wicri:regionArea>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scheikl, Daniela" sort="Scheikl, Daniela" uniqKey="Scheikl D" first="Daniela" last="Scheikl">Daniela Scheikl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Section of Population Genetics, Technical University of Munich , Freising , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Section of Population Genetics, Technical University of Munich , Freising </wicri:regionArea>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tellier, Aurelien" sort="Tellier, Aurelien" uniqKey="Tellier A" first="Aurélien" last="Tellier">Aurélien Tellier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Section of Population Genetics, Technical University of Munich , Freising , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Section of Population Genetics, Technical University of Munich , Freising </wicri:regionArea>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
<wicri:noRegion>Freising </wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PeerJ</title>
<idno type="ISSN">2167-8359</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wild tomatoes are a valuable source of disease resistance germplasm for tomato (
<i>Solanum lycopersicum</i>
) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like
<i>Solanum chilense</i>
, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of
<i>S. chilense</i>
. We investigate the phenotypic differences in disease resistance within
<i>S. chilense</i>
against three common tomato pathogens (
<i>Alternaria solani</i>
,
<i>Phytophthora infestans</i>
and a
<i>Fusarium sp</i>
.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within
<i>S. chilense</i>
, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28133579</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2167-8359</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PeerJ</Title>
<ISOAbbreviation>PeerJ</ISOAbbreviation>
</Journal>
<ArticleTitle>The wild tomato species
<i>Solanum chilense</i>
shows variation in pathogen resistance between geographically distinct populations.</ArticleTitle>
<Pagination>
<MedlinePgn>e2910</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.7717/peerj.2910</ELocationID>
<Abstract>
<AbstractText>Wild tomatoes are a valuable source of disease resistance germplasm for tomato (
<i>Solanum lycopersicum</i>
) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like
<i>Solanum chilense</i>
, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of
<i>S. chilense</i>
. We investigate the phenotypic differences in disease resistance within
<i>S. chilense</i>
against three common tomato pathogens (
<i>Alternaria solani</i>
,
<i>Phytophthora infestans</i>
and a
<i>Fusarium sp</i>
.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within
<i>S. chilense</i>
, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stam</LastName>
<ForeName>Remco</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Section of Population Genetics, Technical University of Munich , Freising , Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scheikl</LastName>
<ForeName>Daniela</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Section of Population Genetics, Technical University of Munich , Freising , Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tellier</LastName>
<ForeName>Aurélien</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Section of Population Genetics, Technical University of Munich , Freising , Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PeerJ</MedlineTA>
<NlmUniqueID>101603425</NlmUniqueID>
<ISSNLinking>2167-8359</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Alternaria</Keyword>
<Keyword MajorTopicYN="N">Fusarium</Keyword>
<Keyword MajorTopicYN="N">General liniarised mixed models</Keyword>
<Keyword MajorTopicYN="N">Phytopathology</Keyword>
<Keyword MajorTopicYN="N">Phytophthora</Keyword>
<Keyword MajorTopicYN="N">Wild tomato</Keyword>
</KeywordList>
<CoiStatement>The authors declare there are no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28133579</ArticleId>
<ArticleId IdType="doi">10.7717/peerj.2910</ArticleId>
<ArticleId IdType="pii">2910</ArticleId>
<ArticleId IdType="pmc">PMC5248578</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1307-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Jan;99(1):82-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19055438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Dec;12(9):921-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jun;190(4):1032-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21323928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 18;8(10):e78182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24205149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 May;173(5):E171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19272015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 May;22(5):589-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19348576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(14):3853-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2005 Jul;18(4):930-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16033565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jun 13;344(6189):1289-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24926021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1735-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2008 Jun;98(6):680-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Jan 08;6:5975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25569306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2011 Sep;107(3):189-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Sep;171(1):345-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May 09;4(5):e1000061</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18464895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(12):2853-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27037798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 May;10(3):311-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2010 Jan;23(1):207-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Jan;178(1):339-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 05;5:582</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25426123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2005 Jun;59(6):1268-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16050103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2011 Nov 01;11:319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22044632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2002 Jul;56(7):1340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 Sep;174(3):308-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2016 Jun 02;8(5):1501-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27189991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2011 Jul;49(7):693-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21530290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:345-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21513455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biom J. 2008 Jun;50(3):346-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Apr;11(4):327-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18248450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Mar;16(3):117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 Dec;174(6):769-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19860556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Sep;105(9):1198-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25871860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 May;16(4):413-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Feb 27;4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25723966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2013 Apr;6(3):524-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23745143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Apr 11;4:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23596453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Oct 14;431(7010):841-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15483611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Nov;32(11):2932-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 May;13(4):414-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Mar;9(3):e1003399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Sep;207(4):1159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25872137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Apr;11(2):135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18329329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2007 Mar 22;274(1611):809-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17251091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2008 Dec;62(12):3100-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2001 Oct;91(10):956-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2012 Jun;5(4):341-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25568055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2006 Feb 7;273(1584):267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543168</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Stam, Remco" sort="Stam, Remco" uniqKey="Stam R" first="Remco" last="Stam">Remco Stam</name>
</noRegion>
<name sortKey="Scheikl, Daniela" sort="Scheikl, Daniela" uniqKey="Scheikl D" first="Daniela" last="Scheikl">Daniela Scheikl</name>
<name sortKey="Tellier, Aurelien" sort="Tellier, Aurelien" uniqKey="Tellier A" first="Aurélien" last="Tellier">Aurélien Tellier</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000898 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000898 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28133579
   |texte=   The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28133579" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024